Aktuelle Projekte

Online Firestorms and Resentment Propagation on Social Media: Dynamics, Predictability and Mitigation

Jürgen Pfeffer, Massimo Fornasier, Raji Ghawi, Mirco Schönfeld, Wienke Strathern, Hui Huang, Konstantin Riedl

Social media serves as a place to gather information, interact, and form opinions. More recently, online firestorms, fake news and hate speech have shaken our beliefs and hopes about the positive power of social media to their very foundations. While negative emotions are in the core of human behavior, algorithms on social media, enhanced by Artificial Intelligence (AI) can produce and reinforce new dynamics. In this project, we will address the mathematical modeling of the formation and dynamics of opinions in large groups of interacting people on social media. Our primary objective is to understand the driving factors of social media group level phenomena that lead to negative dynamics and to offer approaches on how to detect, react to, and possibly mitigate these dynamics early on. The fundamental goal is to reveal the possible relationship between the simple “social forces” acting at individual level, being the “first principles” of social interaction or the game rules, and the potential emergence of a global behavior. The results of our study will provide insights of ethical relevance by discussing responsibility, delegation and control mechanisms in human-AI interacting systems.

Online-Offline Spillovers - Potential Real-World Implications of Online Manipulation

Jürgen Pfeffer, Matthias Uhl, Bahador Barami, Gari Walkowitz, Wienke Strathern

This project analyzes the previously unexplored questions of whether people’s online behavior spills over to their behavior in the offline world and what mediates the respective effects. Employing a two-stage experimental setup, we first use field experiments on social media for online manipulations of our study participants. Second, we study the potential spillovers to our participants’ offline behavior in a laboratory setting. Specifically, we investigate whether attention from others on social media leads to a polarization of people’s political opinions and erodes their commitment to truth. We hypothesize that the treatment group receiving a relatively high levels of attention on social media will show more polarized profiles of political opinions.

Social Media for Large Studies of Behavior

Jürgen Pfeffer

Over 1 billion people use social media every day. When researchers want to utilize these data to study human behavior on global scale, several issues arise. Do people on online platforms represent society? Do people behave online like they do offline? Are our scientific methods appropriate for social media data?

Changing Power Relations in Data Use & Governance

Laura Mahrenbach, Jürgen Pfeffer

This project confronts the juxtaposition of two new forces in global politics: the growing pervasiveness of digital technologies in politics and our daily lives and the concurrent shift in power relations in global affairs. How and why are governments using and governing (big) data? To what extent are actors developing new paradigms of data governance? What are the implications of political digitization for citizens, the Global South, global governance and the world economy? We explore these questions by examining data governance and use in Brazil, India, China and the US at the national and international levels.

Algorithms for Context-Aided Network Analysis

Mirco Schönfeld, Jürgen Pfeffer

It is only context information that allows for qualitative grading of modeled network structure and structural analysis. However, current network analysis methods lack a thorough support of considering context data for analysis tasks. As a consequence, such data is often disregarded. To tackle this shortcoming, we develop novel algorithms that effectively deal with data heterogeneity and efficiently process context information for several steps of network analysis - from the creation of networks to their structural analysis as well as their visualization.

Critical Data Studies

Katja Mayer, Jürgen Pfeffer

Critical Data Studies (CDS) explore the cultural, ethical and socio-technical challenges at the interface of computer science, social science and society. Together with students we focus on issues of big data, data science, data ethics, privacy, fake news, and elaborate how data systems and algorithms can help solve societal problems while at the same time conforming to principles of responsible research and innovation.

Networks of Political Prosecution

Cindarella Petz, Jürgen Pfeffer

In this project, we study the extent to which the decisions and processes of the Austrian judiciary were influenced by the Austrofascist regime between 1933 and 1938. Using historical network analysis and based on court proceedings from this era, we draw novel inferences regarding how charges, the political convictions and agency of diverse actors (e.g., judges, lawyers, police), as well as broader social cohesion and political alignment of the accused evolved under the fascist regime.

Ontology Based Interoperability for Big Social Data

Raji Ghawi, Mirco Schönfeld, Juergen Pfeffer

Everyday we are confronted with a growing amount of distributed and heterogeneous social data. This large data can be an important source of information when a meaningful data management allowing for precise data analysis is applied. Ontologies and semantic web technologies provide a pertinent means for expressing knowledge and information at semantic level. These approaches are of paramount importance to Computational Social Science.

Network Visualization & Perception

Jürgen Pfeffer, Mirco Schönfeld

Visualizing social structure has been a key feature of social network analysis since its earliest days and visualization is supposed to be - together with – measurement – a key factor responsible for the rapid development of the field of social network analysis. When seeing network visualization as a communicative effort, successful visualization of network figures becomes a challenge that includes both graphical encoding of information and perceptual decoding by the consumer of the visualization. We know very little about how people perceive our visualizations and about the cognitive processes related to consuming and understanding network visualizations. In this project, the receiver of our communicative efforts is studied.